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The motion of a small particle in a steady stream of liquid, uniform at infin- 

ity, is considered. Solution of equations of motion corresponding to a uniform 
and rectilinear immersion at infinity is obtained in the form of series in powers 
of Stokes numbers. The solution is used for defining the single act of flotation 
when the Stokes number is fairly low and the effect of inertial factors on the 

particle motion is insignificant. The first two approximations of the critical 
impact parameter with respect to the Stokes number, which define the probabil- 
ity of collision between the particle and the bubble surface, are derived. It 
is shown that the critical impact parameter is independent of flow characterist- 

ics within fairly large terms. The region where a collision between particle 
and bubble is improbable and, consequently, the flotation process ineffective, 
is indicated. 

A perfect flow around the particle was assumed in [l] when solving a similar prob- 
lem without taking into consideration inertial factors. In [Z] direct hydrodynamic 
interaction between particle and bubble surface through a thin interlayer of liquid was 

considered instead of convergence of the particle and bubble surface. 

1. The oquatlonr of motion of the particle and 
the generating approximation of the problem. We 
represent the equation of motion of a small spherical particle in a liquid in dimension- 
less variables in conformity with [3] in the form 

(1.1) 

q=v/V, g=u/Tr, z=Vt/L, p=rlL=t,/e 

x = dlldz, G = 2/~(d2-ddga2/(pV) 

K = 2/o Va2d2 I (Lp), R = 2LVd, I p 
where a and 4s are the characteristic dimension and density of the particle; d, 
and. p are the density and dynamic viscosity of the liquid; R is the acceleration of 
gravity; j is a unit vector directed vertically upward; r is the radius vector of 



704 E. 8. Kremer and H. F. Nagaev 

the particle center; v (t) and u (r, t) are the velocity vectors of the particle and 
liquid, respectively, L and IJ are the characteristic linear and velocity units of 

the flow; R and R are the Stokes and Reynolds numbers; 8 / dr is the Hamiltonian 
(operator), and du / ar is a 3 x 3 matrix. The derivative du / dt -= du / at 
+ vdu / dr of velocity of a particle of liquid and the acceleration of the solid part- 

icle dv / dt in the integral in (1.1) are calculated at instant t = t’ and r= 
F (t’). 

Let us assume that the liquid flow is steady and axisymmetric, and that its veloc- 
ity at infinity is 1’. In the spherical system of coordinates (r-, tp) attached to 

some point of the axis of symme~y the stream fbnction Y (r, rp) is of the form 

r 4 00, W = -1/,Vr2 sin2 cp (1.2) 

The radial &, and tangential <, velocity components of the liquid are deter- 
mined by the xektions 

Formulas (1.X) are equivalent to four integro-differential equations in the unknown 

e, cp, rip = VP and qp = s&. We reduce the order of that system by project- 

ing the second of Eqs. (1.1) in the radial direction, which then assume the form 

Q+%2cp i de + Tk# = 0 

In the case of low Stokes numbers (Kg 1) the solution is sought in the form 

(1.3) 

In the generating approximation (X I= 0) we have 

ra - 50 + Gj = 0, rp&p~ I de t rlmo = 0 

50 = 5 ~~fi-=rp,~ qp,~ =II rlnxp2 ylrp3 = %tq 

(1.4) 

where zpo and zVo are basis vectors of the particle generating trajectory. In the 

generating approximation only the Archimedean force and the viscous resistance to 

Stokes motion are taken into account. The problem of perfect flow around a spherical 
bubble was solved in [l] in this approximation. substitution of expressions for ){pD 
and 11~” obtained from the first vector equation in (1.4) into the second yields for 

the particle generating trajectory the equation 

where E is the constant of integration. Passing in (1.5) to limit F -+ 0, we find 

on the strength of (1.2) that the constant g is the dimensionless impact parameter 

(the distance between the rectilinear trajectory of the particle and the vertical axis 
of symmetry normalized with respect to the characteristic dimension L). 

To obtain the general solution of variational equations of the generating system 
(1.4) it is sufficient, according to Poinca&‘s theorem [4], to determine the derivative 

&p, / ag. We have 



Interaction between a particle and a spherical bubble 705 

&p = AE” / (G co, sin q. - E~~?\(I~ J’ &qo), A = const 
(1.6) 

In conformity with (1.4) the asymptotic behavior of variation 6~~ as E -+ 0 is 
defined by 

+=-N(E,-VG+9 

For the determination of successive approximations @I, 92, . . . we have in- 
homogeneous linear differential equations of the first order whose homogeneous parts 
are the same as in the variational equations of the generating system. Hence their 
general solutions are of the form of a sum of particular solutions that corresponds to the 
right-hand side and of the solution of the homogeneous equation that coincides with 
(I. 6). We assume that: 1) ton&ants in the homogeneous parts of general solutions 
(such as A in (1.6)) vanish; 2) the particular solutions that correspond to right-hand 
sides decrease in proportion to P, where tl > 2, as ~--to. Thelattercan 
always be achieved by adding to the particular solution a term of the form (1. G).Tak- 
ing additionally into account homogeneous solutions of the type (1.6) is equivalent to 
the substitution of expansion % $-- 1/xg, + 0 (K) for the constant 5 in the 
integral (1.5). Consequently, since 8~~ / Be --) 0, 
generating) impact parameter 

E-+0 
g is the true (not only the 

t = lim,_+O (8-l sin q~) 

Note that the small parameter K in the input system (1.1) is the coefficient at 
the higher derivative dq / & and that the order of the generating system (1.4) is 
accordingly lower by two orders than that of the input one. Hence only a particular 
solntion of (1.1) can be constructed in the form of series (X.3), which would depend 
on the Single constant E and correspond to uniform settling of the particle at infinity. 

We shall now determine the coefficients of expansion (1.3). Differentiating the 
first of Eqs. (1.4) with respect to 1: , and taking into account that dj I d-c = 0, we 
obtain 

&, / dz - qjo (d5 / dp), = 0 Cl.71 

where parentheses indicate that the components of matrix dg I’ dp are calculated in 
the generating approxi~tion. Equating the coefficients at I/x in (1.1) and 
allowing for (l-7)* we obtain for the upon qr and cpr a homogeneous system 
in the form of variational equations of the generating system. This means that ‘Ih = 

“or = 0 and the integral term in the first of Eqs. (1.1) affect only the approxima- 
tion of the order of 0 (K”/l). 

2. Derivation of the second and third approxima- 
t i o n S. Let us determine the projections of vectors qli (i = 2,3) on the generating 
polar directions zpo and zQ,,. Since the directions zpo and z&, of the gener- 
ating and Tp and rw of the true polar basis vectors differ by the small angle cp - 

CPO == K~I, -I- 0 (F/p), hence 

ZP = ~PO + ‘pz~oli: + (~35, KK”,r i 0 (K2) 

TP, = %o - CPZG~K - v&Jolifs” + 0 (K2) 
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The particle radial and tangential velocity components are represented in the 
form of expansions 

'10 = 7PO + (rl lx! -k wl(Po) K + (VP3 + ‘PaTuo) K”‘* + 0 (K”) 
(2.1) 

‘IT = rlro -!- (%z - ‘fz%n) K i- b-km - qyjpo) K”‘z -” 0 (Ii?) 

Note that the generating basis vectors ‘$0 and zmo are independent of the Stokes 

number K. 
Assuming that Xi R = 0 (K) and taking into account (2. l), we obtain for the 

deter~nation of approximations of order 0 (K) equations of the form 

h = (1 - x) qpo8-, 

where the correction fpa is the particular solution of the last of Eqs, (2.2) that satisf- 
ies the condition cP2 / 8 z 0. By virtue of (1.6) the solution reduces to the form 

cpa = - (1 - x) Fr (8, g) I (rip3 sin 90) (2.3) 

Subsequent approximations of the order of 0 (R/t) are determined by the 

(2.4) 

where k is the unit vector normal to the plane of motion of the particle, After in- 

tegration of the last of Eqs. (2.4) we obtain 

:$ I/xi%n(I -- x)~~F~(~,F;)l(~~~sill(~~) (2.5) 
(p3 = 

where primes indicate that the respective quantities are calculated for E = E‘ (E = 
&I). It follows from (2.5) that the third correction spa satisfies condition 
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fpa f E z0 0 I hence (2.5) is the sought solution. 
Note that the approx~~tion of the order of 0 (Iit) defines the effects of particle 

inertia and of the apparent additional mass. The next following approximation of the 

order of 0 (R/z) represents the correction for the unsteadiness of flow around the 

particle with allowance for the effects of inertia and apparent additional mass, The 

derived solution is valid for any steady axisymmetric flow that is uniform at infinity, 

3, The critical imp-,act parameter. Letusconsider the 
motion of a particle near asphericalbubble floating upward at constant velocity V 

(Fig. 1). For this we locate the origin of the polar system of coordinates (r, cp) at 

the bubble center and take the bubble radius as the linear scale L of the flow. prop- 

erties of the steady flow of liquid around the bubble are determined by the Reynolds 

Fig. 1 

number. When R > 1 
we have 

the 

Ii 
I 2 

Fig. 2 

flow is nearly perfect and, in conformity with [5], 

9 = - *sin2cp -t_ -+g”$(2+cos(r) >i (3.1) 

accurate to quantities of higher order of smallness. 
If R < 1 (which in accordance with estimate (2.4) means that the considered 

particles are heavy in the sense that x < 0 (a / L)), the flow is close to a Stokes 
flow, and the following Oseen expansion is valid: 

I# = - [2 + E + 3/8 R (2 + E - (2 + E + e2) cos cp) -t- (3.2) 

0 (R2)1 x V,e-2 (1 - E)% sin2 cp, 0 (R) < e < I 
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The particle critical trajectory osculates the bubble surface, i. e. 11~ = 0 when 
& = 1. As the distance to the bubble diminishes, the effect of Magnus type forces 

generated by the particle rotation in the inhomogeneous external flow, increases. 
Allowance for this effect leads to the appearance in Eq. (1.1) of an additional term of 
the form K [(d/o?& X 51 X (q - 5). H owever, owing to the used here generating 
approxima~on, that term is of the order of 0 (K2), III conformity with (1.5), (2.Q 
and (2.4) the equation that determines the critical parameter g = x is of the form 

sZ,+(1-~x)KQ,+3 ~~+K‘M2~+O(K2)-0 (3.3) 

S20=1-~2(G-+l)/G 

Solution of the ~a~c~dental equation (3.3) may be represented in the form of series 

x’= l+G 1 [G - (1 - x) co,K -t_ 3 1/g (I - ~9 (D,W+@ (K*)] t3e4) 

~~~~~(~,~G/~G+l~) (i= 1,2) 
When determining the coefficients of series (3.4) it was taken into consideration 

that the stream function of flow around the bubble can be represented for any R in the 
form I$ = (1 - a) f3 (a, VP), 0 (1, cp!< 00. 

Because of this the improper part 

1 

fl = a7rPTprl&~in2 cpoP+ + O(K*/x) 

fz = (1 - x) G@e2P-' + O(K'ia) 

analytic with respect to I/R , is separated from the quadrature F, (1, x). 
m the first approbation (K = 0) the critical impact parameter is inde~ndent 

of flow properties (the Reynolds number) and of the ratio x of the particle and liquid 
densities. The quadratures QD, and Bs, are functions of the Reynolds number and, 
in conformity with (2.3), (2.5), (3.2), and (3.4), are for I? = 0 and R = 00 of 
the form 

XX de 
(3.5) 

XI = 31a eff + f” - (Zeff’ + f2 - e2f’= 14) Ge2f 
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flRss = G + 1 - e’, f/R=, = G + (2 i- E) (1 - q2 / 2 

cl(e) = ef’sin 2qo, csa (e) = f - G~‘E~ / f; (‘1 = d/de. 

The dependence of mifdf = cf>i IRZrn and @i(a) = fDi /nZD (i = 1, 2) on para- 
meter G is shown in Fig. 2, where curves 1-4 represent, respectively, @r(s), Q)lW, 
@.‘&@ and @&‘). 

If R > 1 s then formula (3.1) is valid. Subsisting in the quadratures mrD, 
and 0s the variables of integration E + z in accordance with (3.1) from (3.5) we 
obtain 

at, = @r(d) + 2.65 R-'i4G-'j= (4G2 + G - 9) (3.6) 

0, = O?Jd) + R-"l,G-'/+ (67.69 + 62.98G + 10.57Gs) 

which is accurate to quantities of higher order of smallness. Note that expansions(3.6) 
are not valid when GR?Il--+ 0. 

The present investigation indicates the existence of a “no-flotation zone” when 
1 > G > R-*,2. Such zone is understood here to be the space of dimensionless 

numbers G, R, x, and K that define the problem similarity criteria, inside which 
x = 0 and, c~e~~tly, the space in which collision of the particle with the bubb- 
le cannot occur. The dimensions of that zone are determined by the condition that 
expression (3.4) must be positive. 
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