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The motion of a small particle in a steady stream of liquid, uniform at infin-
ity, is considered. Solution of equations of motion corresponding to a uniform
and rectilinear immersion at infinity is obtained in the form of series in powers
of Stokes numbers, The solution is used for defining the single act of flotation
when the Stokes number is fairly low and the effect of inertial factors on the
particle motion is insignificant, The first two approximations of the critical
impact parameter with respect to the Stokes number, which define the probabil-
ity of collision between the particle and the bubble surface, are derived. It

is shown that the critical impact parameter is independent of flow characterist-
ics within fairly large terms. The region where a collision between particle
and bubble is improbable and, consequently, the flotation process ineffective,
is indicated,

A perfect flow around the particle was assumed in [1] when solving a similar prob-
lem without taking .into consideration inertial factors., In [2] direct hydrodynamic
interaction between particle and bubble surface through a thin interlayer of liquid was
considered instead of convergence of the particle and bubble surface,

l, The equations of motion of the particle and
the generating approximation of the problem, We
represent the equation of motion of a small spherical particle in a liquid in dimension-
less variables in conformity with [3] in the form

% dn 3 ag .
K(1 +-—2—)-E;=TK% o —Gj—(—8)— (1.1)
T
Koo ((dn by v 3 K« d &b
3 T:?S(F_ —BT)T=1:’ Vi—v t5 R dp dp
_ e
= v

n=v/V, T=u/V, v=Vt|L, p=r/L=1/¢

x=dy/ds, G=72/o(de—dr)ga’/ (V)

K = %4 Va®d, / (Lp), R = 2LVd;/
where @ and d, are the characteristic dimension and density of the particle; d,
and . p are the density and dynamic viscosity of the liquid; g is the acceleration of
gravity; j is a unit vector directed vertically upward; r is the radius vector of
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the particle center; v (f) and u(r, ¢) are the velocity vectors of the particle and
liquid, respectively, L and V are the characteristic linear and velocity units of
(operator), and du/ dr is a 3 x3 matrix, The dervative du/ dt = du / ot
+ vdu / gr of velocity of a particle of liquid and the acceleration of the solid part-
icle dv/dt inthe integralin (1, 1) are calculated atinstant ¢ = f and r =
T (t)).

Let us assume that the liquid flow is steady and axisymmetric, and that its veloc-
ity atinfinity is V. In the spherical system of coordinates {(r, ¢) attached to
some point of the axis of symmetry the stream function ¥ (r, ¢) is of the form

res>o00, W= -1Vr?sin? ¢ (1.2)

The radial {, and tangential {; velocity components of the liquid are deter-
mined by the relations
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Formulas (1, 1) are equivalent to four integro-differentiai equations in the unknown
€, ¢, MNp = NTp and 71p = NTq. We reduce the order of that system by project-
ing the second of Eqs, (1. 1) in the radial direction, which then assume the form

Noedp / de + ng = 0
In the case of low Stokes numbers (K <& 1) the solution is sought in the form
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In the generating approximation (K = () we have
Tl() — co + Gj = 0, T]med(po/dﬁ + n[po == O (1' 4)
8o = Clo=per Moo = MTpn  Nga = MTn

where T,, and 7T, are basis vectors of the particle generating trajectory, In the
generating approximation only the Archimedean force and the viscous resistance to
Stokes motion are taken into account, The problem of perfect flow around a spherical
bubble was solved in {1] in this approximation. Substitution of expressions for 1,
and )¢, obtained from the first vector equation in (1. 4) into the second yields for
the particle generating trajectory the equation

G sin2 g,

G-t oo
T Ve s = (e e (1.9

2

where £ is the constant of integration, Passing in (1.5) to limit g 0, we find
on the strength of (1, 2) that the constant { is the dimensionless impact parameter
(the distance between the rectilinear trajectory of the particle and the vertical axis
of symmetry normalized with respect to the characteristic dimension: ).

To obtain the general solution of variational equations of the generating system
(1.4) it is sufficient, according to Poincaré's theorem [4], to determine the dedvative

dpy / OE. We have
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8¢ = Ae?/ (G coy sin ¢, — €209,/ d¢y), A = const (1.6)

In conformity with (1,4) the asymptotic behavior of variation 8¢, as & — 0 is
defined by
dp = Ae/ (LY G+ 1)

For the determination of successive approximations @1, @z, . . . we have in-
homogeneous linear differential equations of the first order whose homogeneous parts
are the same as in the variational equations of the generating system. Hence their
general solutions are of the form of a sum of particular solutions that corresponds tothe
right~hand side and of the solution of the homogeneous equation that coincides with
(1.6). We assume that; 1) constants in the homogeneous parts of general solutions
(such as 4 in(1,6)) vanish; 2) the particular solutions that correspond to right-hand
sides decrease in proportion to &%, where o > 2, as & — 0, The latter can
always be achieved by adding to the particular solution a term of the form (1, 6),Tak-
ing additionally into account homogeneous solutions of the type (1, 6) is equivalent to
the substitution of expansion & -+ }/ K&, + O (K) for the constant { in the
integral (1,5), Consequently, since 0¢; / d¢ = 0, £ isthe true (not only the
generating) impact parameter

& = limg.o (¢71 sin ¢)

Note that the small parameter K in the input system (1.1) is the coefficient at
the higher derivative dn /dv and that the order of the generating system (1. 4) is
accordingly lower by two orders than that of the input one, Hence only a particular
solution of (1, 1) can be constructed in the form of series (1.3), which would depend
on the single constant g and correspond to uniform settling of the particle at infinity,

We shall now determine the coefficients of expansion (1,3). Differentiating the
first of Eqs. (1.4) with respect to v, and taking into account that dj/ dv = 0, we
obtain

dn, / dv — x, (d§ / dp), = O (1.7)

where parentheses indicate that the components of matrix df / dp are calculated in
the generating approximation, Equating the coefficients at /% in(1.1) and
allowing for (1.7), we obtain for the unknown 1, and ¢; 2 homogeneous system
in the form of variational equations of the generating system, This means that W, =

@, = 0 and the integral term in the first of Egs, (1.1) affect only the approxima=-
tion of the order of O (K*2).

2 Derivation of the second and third approxima-
tions, Letus determine the projections of vectors 1); (i = 2,3) on the generating
polar directions Tp, and Tqy. Since the directions T, and Tg, of the gener-
ating and Tp and Ty of the true polar basis vectors differ by the small angle ¢ —
9o = K¢, + O (Kr), hence

Tp = Tpg + PaTgeK + Q374K -+ O (K?)
Top = Tgo — P2took — @gTpK: + O (K?)
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The particle radial and tangential velocity components are represented in the
form of expansions
Mo = Moo+ (s -+ @age) K + (og + @gno) K% + 0 (k) 3V
Ng = Ngo = Moz — P2Npo) K + Moz — P3Mpo) K7+ -~ O (K?)
Note that the generating basis vectors Tpo and Ty, are independent of the Stokes

number K.
Assuming that % / R = O (K) and taking into account (2. 1), we obtain for the

determination of approximations of order O (K) equations of the form

; gy | Mo { (2.2
dn 1 Ngo
Y](P'Z = A ( d:() - :O ) ( a + npn)
2
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where the correction ¢ is the particular solution of the last of Egs, (2. 2) that satisf-
ies the condition sz /e t—o 0. By virtue of (1, 6) the solution reduces to the form

= — (1 — %) Fr(&, &)/ (Mo, sin @p) (2.3
g
y . dge\3 a2
Fi= Sn?msmq)o{_s( dq;") — deiﬂ ]ds
0

Subsequent approximations of the order of O (K'/Y)  are determined by the
system

My =30 + 3V %/2n (1 — %) A (2.9
= ONpo / 0Po — Ngar O = Mgy / 0P + npo

e dwa + (2:; ) 3_,3[/—(1 )~

dm dr’
ASS( nﬁ)-r:t' ’T

dt? Vr—1

(no x Ak

where k is the unit vector normal to the plane of motion of the pasticle, After in-
tegration of the last of Eqs. (2.4) we obtain

=3y w2n(1 _u)s Fa (g, E) /(oo Sin @) (2.9)
Fy = ——S q:q:;);‘ {no X X 71%,— (a'znplo ———-‘;:?’ ) —d{,—-} kde
0o 0
o
L oden i
A= {§ 5"2"190 )

where primes indicate that the respective quantities are calculated for & = ¢’ (e =
e”). It follows from (2.5) that the third correction @, satisfies condition



Interaction between a particle and a spherical bubble 707

s /&8 0, hence (2,5) is the sought solution,

Note that the approximation of the order of O (K) defines the effects of particie
inertia and of the apparent additional mass, The next following approximation of the
order of O (K'?) represents the correction for the unsteadiness of flow around the
particle with allowance for the effects of inertia and apparent additional mass, The
derived solution is valid for any steady axisymmetric flow that is uniform at infinity,

3, The critical impact parameter Letusconsider the
motion of a particle near a spherical bubble floating upward at constant velocity V
(Fig.1). For this we locate the origin of the polar system of coordinates (r, ¢) at
the bubble center and take the bubble radius as the linear scale [, of the flow. Prop-
erties of the steady flow of liquid around the bubble are determined by the Reynolds
15 4

.

Fig,1 Fig,2

number, When R >>-1 the flow is nearly perfect and, in conformity with [5],
we have

1—ed . @ .
Y= — —a—sin® @ + 5p-tg® - (2 4 cos ¢) % (3.1)

[—,}-erf(zz———;%—{gzerfﬁzdg], 0<le<Ct

z=3 VR —z)elcos? (92) /| VZ—cosgp

accurate to quantities of higher order of smallness,

If R <& 1 (which in accordance with estimate (2, 4) means that the considered
particles are heavy in the sense that % <C O (a/ L)), the flow is close to a Stokes
flow, and the following Oseen expansion is valid;

b= —[24e4+ ¥ R2+e—(2+ e+ &) cosq) -+ (3.2)

O (RY)] X Y2 (1 —e)tsin?g, O(R) <e<t
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The particle critical trajectory osculates the bubble surface, i.e, 1, = 0 when
e == 1. As the distance to the bubble diminishes, the effect of Magnus type forces
generated by the particle rotation in the inhomogeneous external flow, increases,
Allowance for this effect leads to the appearance in Eq. (1.1) of an additional term of
the form K [(d/dp) X §] X (y — §). However, owing to the used here generating
approximation, that term is of the order of O (K?). In conformity with (1, 5), (2. 2),
and (2, 4) the equation that determines the critical parameter § = y is of the form

Qo+ (1 —nKQ+3 ) T K+ OR) =0 @.3)
Q=1 — 32 (G+1)/G

62 1 G
Q=0 (b) LY oo

FEOP, G +1
(0o/08),_. d Fy
e g==1 Py 4,0
* =0 [i + GF 1 y2 ](aa )ezl_ G

Qo = Q"4 (1, 0) + Fa (L %)
Solution of the transcendental equation (3. 3) may be represented in the form of series

2= g (6= =% DK + 3 V 2 (1 — K40 (KY] (-8

O =FLYVGIGE+T) (i=1,2) ‘
when determining the coefficients of series (3.4) it was taken into consideration
that the stream function of flow around the bubble can be represented for any R in the
foom ¢y = (1 — €) 0 (e, @), 6 (1, (p)'<>oo.
Because of this the improper part

Tos T Kok —2H L0V (1, 00K
V1—8+K12(3K) Vlwe 2/1(1 0)Vf2( O)K +0(K)
fr = €720 sin? oP 2 + O (K2)
fo = (1 — %) GD&2 P71 4 O (K'2)

22 ; 3 | (1—e)et (90 \?
P =Gl —e— 0] —2Getctg g soe + e (8({)‘;)
8y = B (e, Po)

analytic with respect to ]/'[? » is separated from the quadrature Fyo, 0.

In the first approximation (K == 0) the critical impact parameter is independent
of flow properties (the Reynolds number) and of the ratio ® of the particle and liquid
densities, The quadratures @, and ¢, are functions of the Reynolds numbgr and,
in conformity with (2, 3), (2.5), (3.2), and (3.4), are for R = (0 and R = oo of
the form

1 1
S f1(e, K) de S f1(¢, 0)de
0

f —ef./z X’ (3‘ 5)

1
@5 ~ GS AVI= Goulj de
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X1 = eff + P — 2eff + 2 — &% 1 4) Ge*f



Interaction between a particle and a spherical bubble 709

€

D, (G) = [i i g Qo de Sd 2
0

fes de’

Xo = 3’2)" cos ¢’ d (0,02 — 6105") / de’

* de” Y1
Ay = (§, JIN )
flrmo =G+1—28, flaey=G-+2+e)(1 —e)? /2
o1{e) = ef'sin2@y, 0a(e)=f—Gfe/f;, ()=d/de

The dependence of P;@ = @, |z_, and @, = @,;|p, (i = 1, 2) on para-
meter G is shown in Fig, 2, where curves 1—4 represent respectively, @), @ (@),
(I)z(d) and (1)2(3)
If R>1, then formula (3, 1) is valid, Substituting in the quadratures @,
and @, the variables of integration & — z in accordance with (3, 1) from (3. 5) we
obtain

@, = DD + 2.65 RUG™: (467 + G — 9) (3.6)
@, = DD + RGN (67.69 + 62.98G + 10.57GY)

which is accurate to quantities of higher order of smallness, Note that expansions(3. 6)
are not valid when GR: — 0,
The present investigation indicates the existence of a "no-flotation zone” when

1>> G > R™:. Such zone is understood here to be the space of dimensionless
numbers G, R, %, and K that define the problem similarity criteria, inside which

% = 0 and, consequently, the space in which collision of the particle with the bubb-
le cannot occur, The dimensions of that zone are determined by the condition that
expression (3,4) must be positive,
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